Tarea 7

Modelos Estocásticos

Fecha de entrega: Martes 28 de Noviembre de 2017 9:30 hrs.

1. Problemas

PROBLEMA 1. Considere una población en la cual cada individuo tiene una cantidad aleatoria de descendientes ξ con función de probabilidad $P(\xi = k) = p_k > 0$, para $0 \le k \le 2$ y $P(\xi = k) = 0$ para k > 2.

- a) Calcule la función generadora de probabilidad $\phi(s)$ de ξ para $s \in [1,1]$.
- b) Si la población comienza con un individuo y X_n es el tamaño de la n-ésima generación, demuestre que X_n , $n \geq 0$ es una cadena de Markov y clasifique los estados de esta cadena.
 - c) Halle la media y la varianza de X_n en términos de p_k , $0 \le k \le 2$.
- d) Bajo qué condiciones sobre p_0, p_1 y p_2 es segura la extinción? Cuál es la probabilidad de extinción si la extinción no es segura?
- e) Sea $Z = \sum_{n=0}^{\infty} X_n$ el tamaño total de la población (con $X_0 = 1$) que sigue la ley descrita anteriormente. Bajo la condición para extinción segura, halle el valor esperado de Z.

PROBLEMA 2. Sea $(N_t)_{t\geq 0}$ un proceso de Poisson de parámetro λ , y sean s_1, s_2 y t tiempos tales que $0 < s_1 < s_2 < t$. Demuestre que, condicionada al evento $N_t = n$, la variable $N_{s_2} - N_{s_1}$ tiene distribución binonimal con parametros n y $p = (s_2 - s_1)/t$.

PROBLEMA 3. Sea $(N_t)_{t\geq 0}$ un proceso de Poisson de parámetro λ . Definimos el proceso el proceso $R_t, t\geq 0$, como $R_t=1$, si N(t) es par, y $R_t=-1$, si N(t) es impar.

- a) Para t fijo, calcule la probabilidad de que $R_t = 1$.
- b) Encuenre la distribución conjunta de R_t y R_{t+s} , $t, s \ge 0$.
- c) Encuentra la función de covarianza del proceso, $K(t,s) = Cov(R_t, R_{t+s})$. $t,s \ge 0$.

Problema 4. Sean $T_1, T_2, \ldots v.a.$ independientes geométricas con parámetro p. Y sea R(t), el proceso de renovación asociado.

- a) Para n y m enteros muestra que R(n+m)-R(m) y R(m) son independientes.
- b) Muestre que R(t) se puede realizar como $N(\lfloor t \rfloor)$ donde N(t) es un proceso de Poisson.
 - c) Calcule la densidad de la parte fraccionaria de una variable exponencial.
- d) (extra) Puedes contruir un proceso e Poisson a partir de R(t) y un conjunto de variables aleatorias uniformes independientes?.